Theory of elasticity

CHAPTER III THEORY OF ELASTICITY

3.1 Simple laws and linear elasticity

Consider a rectangular bar comprising a homogeneous and isotropic material of initial length I in the
direction of x and dimensions h and w in y and z cartesian coordinates, respectively. The bar is fixed
at the top end, and the force F at the free bottom end pulls on it in the x-direction (Figure 3-1).
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Figure 1-3: Deformation of a bar

The application of the force F moves point My, initially at coordinate x, to M'y at x+u. The point My,
close to M1 at x+dx, moves to M'; at x+dx+u+du. The strain of the segment M1-M is defined as the
ratio:

e MM, -MM, _du

(3.1)
MM, dx

When the strain occurs within the elastic domain, it follows Hooke's law (1678), which describes a
proportional relation between stress (o) and strain (g),

o =(Eg) (3.2)

where 6=F/S, S is the cross-sectional area of the bar, and E is the proportionality constant, called
"Young modulus” (1807) or elastic modulus.
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In this particular configuration, the section of the bar is constant in x, and thus the stress o is also
constant. If the total deformation of the bar is Al, we have:

e=Al/l

The deformation, Al in the x-direction, causes contraction of the bar's other sides, Ah and Aw. If the
solid is isotropic, these changes in the lateral dimensions are also proportional to the stress (o),

Aw/w=Ah/h=—-vAl/l=-vo | E (3.3)
where v is a proportionality constant called the "Poisson ratio"” (first described in 1814), this constant
expresses the fact that atoms tend to keep a relative distance that varies only slightly during the
deformation in the elastic domain, so the volumetric changes are small.

As the previous two expressions are linear for forces and displacements, the superposition principle
is applicable, and the elastic strain caused by two forces, F1and F, is the sum of the strains that would
be obtained if only one of the forces acted at a time. The whole linear elasticity originates from these
expressions; no other necessary principles exist. If the material is homogeneous and isotropic, the
two constants E and v are sufficient to characterize its deformation behavior in the elastic domain.
Applications:

a) hydrostatic pressure

In this case, the pressure (p) is the same on every

| p p external surface as if the bar is immersed in a liquid.
] o~ The variations, Al, Ah, and Aw, are obtained by
considering the stresses separately in the x, y, and z
P | p directions and then adding the effects together, that
is:
/
/
p Ah _p P . P__ P
—=—4vI+v=—-2(1-2v
Tp =Ly liy B Pa-ay (3.9)

Figure 3-2: Hydrostatic pressure

Ahlh=Aw/w=Al/l

AV/V=Ah/h+Aw/w+Al/l=-3(1-2v)p/E (3.5)

) ] AV
The bulk modulus K is defined by: pP= —K7 (3.6)
k=_E (3.7)

31-2v)
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With this relation, it is clear that for v < 0.5, K > 0. In fact, K < 0 would correspond to an expansion
of the solid (47> 0) under the action of pressure, which would mean that the solid can provide energy
to its surroundings in terms of thermodynamics. For many metals, v~ 0.33 (relatively incompressible)
and K = E. Natural rubber is close to v = 0.5, as well as liquids. We discuss this further in section
3.6.1, that the Poissons constant can range between -1 <v < 0.5.

b) pure shear

The case of pure shear can be obtained, for example, from the system of forces F applied to a cube

9
6 %/2 I AL

of side length L, as in the Figure below:

AL
A =5
L

Figure 3-3: Pure shear plane state

In this case, we have :

AL F(l+v] (3.8)

This system of forces produces shear stress of =F/S on the planes of the inscribed cube at 45°. The
faces of the cube have turned by an angle of 6/2 so that:

6 6 45 AL (3.9)

2 2 L2 L

9=20(1+_") (3.10)
E

We characterize this by a shear modulus o=u8, so that:
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=2(1+v) (3.11)

and u = 3/8E forv =1/3.

3.2 Strain tensor

In most cases, deformation is, at the same time, plastic and elastic. Therefore, it would be appropriate
first to give a very general definition of strain tensor that could be applied for both plastic and elastic
deformations and then to detail the particularities of both cases. This strain tensor approach is
discussed in detail in the following. um

a) Strain tensor definition

Deformation is the response of a material to stress loads.
We consider two neighboring points, M1 and Mg, in a
generic solid (Figure 3-4) so that M,M, =dx . A system
of external forces is applied to this solid so that M1 moves
to M'1 and M2 moves to M.

M\M,"=u(M,) represents the displacement of point M
and, in the same way MM, = ;(Mz) represents the
displacement of point M..

Figure 3-4: Local deformation of a vector in a solid

If dx:  represents the vector M, M, , after deformation, it becomes:

dx;,'=dx; +du, (3.12)

The distance between two points before deformation is:

dl = \Jdx,” +dx, +dx,’ (3.13)

and after deformation, it is:

dl' = \/dxl r2+dx2 '2+dx3 12 (314)

1 We can use Einstein notation where the components of vectors are given by indexes and where the sum is represented
by a repetition of a same index.
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The first-order approximation is:

du, = %dxk = B,dx, (3.15)
k

Bris called the displacement gradient tensor.

We can also write the second-order approximation:

a1 = di? +2 2% g, + 2% 0% gy ar, (3.16)
X, ox, dx,
As this expression contains the sum of the indexes i,k, and I, it can be simplified as follows:
dl"” = dI* +2u,dxdx, (3.17)
or
1 du, Odu, Odu, dy,
= LRk LT 3.18
i 2{axk dx,  ox, ox, (3.18)
. du, du,
For small deformations, the term 3 Ix. can be generally neglected, and thus:
X, Ox;
u, =L O, O (3.19)
2\ dx, Ox,

where %ijs called strain tensor. By its symmetry, it can be diagonalized, and thus, its components

(*1>*2 %3 coordinates) can be found:

along the principal axis
dl” = (8, +2u, )dxdx, = (1+2u®)dx, +(1+2u®)dx, +(1+2u®)dx, (3.20)

The comparison between (3.20) and (3.14) gives insight into the physical meaning of this expression.
As a matter of fact, by identification of terms:

dx,' = \J(1+2u™)dx, = 1+ u)dx, (3.21)

The change in volume of an element dV = dx,dx,dx, is then:

dV'=dV(1+u)1+u®)1+u®) = dV(1+u® +u® +u®)=dV(1+u,) (3.22)

The trace of the strain tensor (invariant) represents the variation in the volume of a deformed element.
The symmetrization of the strain tensor consists of a change of basis. To make it simple, consider the
elastic deformations in a two-dimensional space.
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Figure 3-5: Decomposition of pure shear with a symmetric deformation and a rotation

We note that the displacement gradient tensor B is not necessarily symmetric as in the case of pure
shear (Figure 3-5a), and we see that the distortions can be thought of as the sum of deformations
(Figure 3-5b) and rotations (Figure 3-5c). It also appears that rotations, which do not contribute to
the elastic deformations of the solid, correspond to the antisymmetric? part of the tensor B, while
deformations correspond to the symmetric part of B -in reality, this is true only when the deformations
are small.

For small deformations, we define the following:

W, = %(ﬁ!‘k - ﬁki ) =0 U, = %(ﬁ{-k + ﬁk,-) (3.23)

and

where @i are the components of the tensor @ = B , Which represents the rotation of the solid as a

rigid body, and the % are the components of the strain tensorz = B’

3.3 Stress tensor

The resultant of the forces acting on a specific volume of a deformed body is given by:

The forces i are internal forces in the neighboring region next to the volume being considered. We

assume that the force can be transmitted only on the surface of this volume. Thus, the divergence
theorem must be applicable:

fEdV=faaG"k dV=4o, ds, (3.25)
Xk

2 A tensor is called antisymmetric if it alternates sign (+/-) when any two indices of the subset are
interchanged.

page 34 Chapter 111 Physics of materials



We call Cistress tensor. It can be shown that this tensor is symmetric to the strain tensor by
calculating the moment of the forces acting on the volume dV. The equilibrium of the solid becomes

simply F.=0 ang:

90,

=0 .
i (3.26)

3.4 Thermodynamics review
The variation of internal energy of a thermodynamic system is given by:
dE = 8Q+ 6W (3.27)

where 0Q is the heat given to the system, and 677 is the work done on the system. These two quantities
are not exact total differentials. In particular: 6Q <TdS and the equal sign holds only in a reversible
process.

The following considers first those processes and takes into account the classic thermodynamic
variables P, V, S, and T, the internal energy is defined as:

dE =TdS — PdV (3.28)

If the volume is constant, then dE = dQ. The internal energy E is the most appropriate form of
expression for the energy of an adiabatic system with constant volume.

If the pressure is constant, the heat exchanged with the system is given by:

dQ =dE +PdV =d(E+PV)=dH (3.29)
dH =TdS +VdP (3.30)

This expression is an exact differential. In an adiabatic process, dH=0. H is called enthalpy and
represents the most appropriate form of energy for a constant pressure process. The work done while
keeping a constant temperature in a reversible process is given by:

OW =dE—-dQ=dE—-TdS =d(E—TS)=dF (3.31)

dF = —PdV — SdT (3.32)

F=E-TS is the thermodynamic free energy (Helmholtz free energy) and represents the most
appropriate form of energy for an isothermal system at constant volume if the process is
nonreversible, 6Q <TdS and thus F > W .

Finally, if the pressure and temperature are constant (common conditions for a laboratory), we
use the Gibbs free energy:
G=E-TS+PV=H-TS=F+PV (3.33)
dG = —-SdT +VdP (3.34)
The physical meaning of G can be grasped considering systems of N variable particles. We then
introduce the chemical potential x of a particle, and the internal energy variation becomes:
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dE =dQ+dW + udN (3.35)
dG = —S8dT +VdP + udN (3.36)
As T, P, and N are independent, it can be rewritten as:

G=uN (3.37)

G is the chemical potential of the system.
How are thermodynamic functions used?

. o ds . . .
In a nonreversible process d—? <T 7 entropy increases without adding heat.

80 PdV dE PdV dE __dS
g T g T T (3.38)
dt  dt dt  dt  dt dt :

d(E-TS) _dF _
dt dt

If T and V are constants, then 0

The system tends to a minimum of free energy, F.

If P and T are constants

dE-T5+PV) _dG VP _,, (3.39)
dt dt dt
The system tends to a minimum of G.
If V and S are constants:
E=6—Qs:!‘.«,iS=0 = dE=0 (3.40)
dt dt

The internal energy E is minimal, and the process is reversible. Therefore, F and G's utility is found
in the irreversible processes.

3.5 Thermodynamics and Deformation
3.5.1 Work

Consider a deformed body that is left without external stress applied. The deformation ui varies of
a quantity oui.

J0,
The work d done by the internal forces F = axd‘ is given by:
k

[owav = | 9% 54 av (3.41)
ox,
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The integration by parts yields:

[owav = o, 8u,ds, - [ o, dou, 1, (3.43)
z v d"x

k

The surface integral represents the surface tension of the body, which is negligible in the elasticity of
metals. In our case, the forces applied externally to the deformed body are zero and do not contribute
to this term. Using the symmetrization of the strain tensor (3.19):

(3.42)
(3.44)

I SWdV =— I 0, (0u, )dV
and consequently oW = —o0,0u,
This expression defines the work per unit volume done by the deformation of the solid. We note that
dW is the matrix product /and /trace.
3.5.2 Energy
The variation of the system's internal energy per unit volume dEy is given by:
dE,=0Q,—0W,=TdS, +0,du, (3.45)

The minus sign (-) before the work term is also in (3.44), in which the body does work on the
surroundings.

Example: uniform compression

In uniform compression, %« = ~Pdy
Using equation (3.45) per unit volume, we get:

dE, =TdS, — pdu, and thus

dE=TdS—p%V=TdS—pdV

We find the classic form of internal energy (3.28) again. Thus, the equation in (3.45) generalizes the
expression for the internal energy. In what follows, we do not mention if the energy is per unit volume,
but the context suffices for clarifying. The other forms of energy result from the following and the
same procedure.

dF =-8dT + o0 ,du,, (3.46)

dG =-8dT —u,do, (3.47)

o, = a—E = a—F 3.48

ik au{-k S au{-k . ( . )

“, =_[ dG J =_{ oH ) (3.49)
ao.r'k T acik s
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353 Physical origin of elasticity

Consider a longitudinal elastic bar kept in strain by a force f. A retraction force balances this force fr
that opposes f. If we consider a small deformation dl, the variation in free energy F=E-TS is given by
(3.46),

dF =—SdT — PdV + f.dl (3.50)
oF oE as
= — =— -T—

f;— al Ty a! T,V a! T}V (3.51)

where f is the absolute value of the retraction force.

From this expression, we deduce that the elastic retraction force corresponds to the increase in free
energy of the system per unit length of elongation. It can be divided into two terms: one contribution
coming from the opposition of the sample to the increase in internal energy and another from the
entropy relative to heat dissipation. In other words, the deformation modifies the distances between
atoms with increased internal energy (the position is not a minimum in the bond potential energy
anymore) and dissipates heat. We can separate these two effects by studying the variation of the
retraction force (elastic modulus) as a function of the temperature. As the free energy F is an exact
total differential of T and I:

2(06) 2 (o)
dI\dT ), dT\ dl ), '
which becomes considering (3.50) and (3.51):

0S| _df,

all,., =37 N (3.53)
By combining (3.53) and (3.51)

oE af,

=— T =~ (3.54)
h=al,,

The expression in (3.54) of the retraction force enables us to distinguish two physical cases: the ideal
crystal and the ideal elastomer (natural rubber). In the first case, the retraction force corresponds only
to an internal energy variation and does not vary as a function of the temperature. In the second case,
the retraction force increases proportionally to the increase in temperature. As a matter of fact, T>0

and fr > 0 and thus % >0 also.
JaT

An ideal elastomer heats up when stretched and cools down when released. The physical origin of
this behavior comes from the molecular structure of elastomers. These materials are formed from
long polymer chains linked with weakly interacting Van der Waals forces in the order of one
interaction for every 100 monomers (see Chapter I). The internal energy of an elastomer is only
affected slightly by elongation. Consequently, elongation leads to increased monomer chain
alignment of the chains and, thus, a decrease in entropy.
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oS
. —<0 . . . . .
Since 9l , T increases with the retractiforce fr(3.54). The retraction force is due to the
Brownian motion of the monomers, which increases with temperature. We must note the analogy
with gases, which warm up when adiabatically compressed. In analogy to (3.51), we have:

;9P| _9E| _ 35| OE

= a_TV a_VT_ a_VT v (3.57)

T

Most crystal materials show an elastic behavior of enthalpic type, whereas amorphous polymers
behave similarly to rubber. In the order of 100 GPa, the elastic modulus of crystal materials is 100
times larger than those of elastomers.

3.6 Hooke's law
3.6.1 Deformation of isotropic solids

To apply general thermodynamic relations found in § 3.5, we must express the energy as a function

of the strain tensor. We can find this expression by developing the energy in the power series of i,
Consider a solid body that has been deformed at a constant temperature. The thermodynamic potential

to take into account is the free energy F. We suppose that for i =0 there are no stresses, so that
0% =0 Asin equation (3.48):
o(2)
ik au:‘k .

Thus, the development of F does not include linear terms in % . In an isotropic solid, the deformation
energy has to be independent of the direction of deformation to the coordinate system of the solid. In
other words, the energy must be invariant to a coordinate transformation.

Invariants

We noted that %« is a symmetric matrix, and thus, it can be diagonalized. To find the eigenvalues, the
characteristic equation to solve is written as:

detw —AN=0=A"-Tr(u)A’ - C,A+det(u)=0 (3.55)

2 2 2 _ _
Co=u" U’ 3+ Uy — Uy Uy — Uy Uy — Uyl (3.56)

This equation does not depend on the coordinate system chosen, and thus:
Tr(u)=u; Ciang det() are invariants.
There are two independent invariants of the second order:

=72
[Tr@@)), G, Any linear combination of these invariants is also invariant, for example:

> ul =[Tr@)I* +2C,

The second-order expansion of F, which is a scalar, must be expressed as a function of the two
quadratic independent invariants:
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F=F(]+%[Tr(:7)]2+u2u2ik (3.57)

where A and p are called Lame parameters. Expressing the tensor as the sum of a diagonal matrix
(uniform compression or expansion) and a matrix with a trace equal to zero (pure shear) is helpful.

Uy = (“.-k - %5;;((TT(§))]+%5,.£ (Tr(u)) (3.58)

As Z(”i) and [Tr(u)I*are also invariants, it is easy to demonstrate (optional exercise) that:
ik

2
Z(uﬁ‘ —;6,.,( (Tr(ﬁ))) is also invariant. Using the fundamental relation (3.48), F can thus be written:

ik

1 Y K. -
F=F+ ,uZ(u& -3 Sik(Tr(E))] + 2 (T (3.59)
ik

2
K=i+Jn (3.60)

_{ OF J

ik =\ 5,

With Nty ), we can directly find the relation between the stress and the strain tensors. It is
Hooke's law again, already expressed in simple form in (3.2):

o, = 2#(1{11 —%Tr(§)5&)+ KTr(u)d,,
It is simple to calculate the trace of i
Tr(c,) = 3KTr(&) (3.61)

Substituting this expression into (3.61), we obtain the inverse relation:
For a body in uniform compression:

Oy = _par'k (3.62)
Considering (3.63) and (3.22), we come to:
u —LTr(é)fS +L(a —1Tr(§)5 ) (3.63)
ik 9K ik 2# ik 3 ik -
For small pressure and volume changes, this can be written:
=Y -_P (3.64)
|4 K

1/K represents the coefficient of uniform compression. In the same way, considering a pure shear, we

can give a physical meaning to x. As a matter of fact, if % =0/2 g5 in Figure 3-5, the expression
(3.61) yields:
1__fov)1 (3.65)
K ap )V
o, =Mu0 or 92 _g where p is the shear modulus.
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Finally, considering a homogeneous tensile stress 923 =9 it is readily shown that the expression
(3.2) can be obtained (optional exercise):

u_O'
3T g

9Ku
3K+u (3.66)

with E=

where E is the Young modulus of elasticity. We equally obtain the transverse components of the
deformation (3.3):

o
Uy =Uy ==V E
Then. considering that: y = + K~ 2K (3.67)
2 3K+

where v is the Poisson ratio, we can introduce the following analysis. Since K and p are always
positive, v can only vary between -1 (K=0 by (3.67)) and 1/2. From (3.66) and (3.67), we can derive
equation (3.7) discussed in section 3.1:

K= E
3(1-2v)

The formulas (3.58) and (3.61) are usually written with the classic parameters E and v:

E % _
o, = 1+v(u& +1_2v Tr(u)5l,k] (3.68)
u, = é((l+v)0'jk —vTr(E)&,k) (3.69)
Relations between elastic parameters in isotropic bodies
E=2u+A(1-2v) and —2uv+A(1-2v)=0
lead to:
A H(3A+2u)
= E: —_—
S+ and A+ (3.70)
and inversely, we obtain equation (3.11) discussed in section 3.1.
E
=20+
This gives also: 2 VvE
C(1+v)1-2v) (3.71)
and:
A+u=—H
H 1—2v (3.72)
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3.6.2 Temperature effects

The preceding expressions have been introduced without considering thermal dilatation. However, if
the temperature varies, there is a deformation without external stresses. Therefore, a term of the first

order in i has to be added to the expression (3.59) for the free energy F. Moreover, we consider
that the temperature variations are small, so the variation of F as a function of temperature is also of
the first order. Therefore, the only first-order invariant being Tr(u) , F must be in the form:

_ 1 Y K, _
F=F(T)-Ko(T -T)Tr(u)+ ﬂZ(u,-k - 55&(Tr(i))] + E(Tr(ﬁ))2 (3.73)
ik
We obtain the expression of the stress tensor using (3.48) as before:
o, =-Ka(T -T,)8, +2 ;{uik - %Tr(ﬁ)ﬁ& ) +KTr(i)5, (3.74)

If i is zero, considering the trace of the right-hand side of (3.74), we come to:

- AV
Tr(ﬁ)=7=05(T—To) (3.75)

where a is then the coefficient of thermal expansion. The linearity of equation (3.74) is generally
valid for a range of temperatures of some tens of degrees. The expression is valid for more significant
variations, but we consider that a=a(T).

3.6.3 Equilibrium equation of isotropic bodies

We can apply the equilibrium equation (3.26) to the expression for the stress tensor given by Hooke's
law in (3.68):

aaik =0= E au{'k + v aTr(f) _
ox, 1+v{dx, 1-2v ox

E du N E o,
2(1+v) 9x;  2(1+v)(1—2v) dx,dx, (3.76)

This equation can be written in the vectorial form:
(1-2V)Aii + grad(div(ii)) =0 (3.77)

This expression can be found in the literature in different forms according to which vector calculus

formulas have been used. For example, applying the relation 87@d(div(it))= Aii+rot(ror(it))
equation (3.77) becomes:

2(1-v)grad(div(ii)) — (1- 2v)rot(rot(ii)) = 0 (3.78)

Applying divergence to equation (3.78), we obtain:
Adiv(ii) =0 (3.79)
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Applying the laplacian to equation (3.77) and taking into account (3.79):

AAi (3.80)
These expressions enable us to solve equilibrium problems for elastic bodies.

3.64 Generalized Hooke's Law

Asboth @ and # are tensors of order 2, Hooke's law is expressed for the general case by the linear
relation:

0, = Cttyy (3.81)

)

The tensor for the elastic constants Cis of order 4, i.., it has 3*=81components. However,
considering that the contribution to elastic energy:

1 1
W= Ecgug = ECWu

kI

u, (3.82)

It must be equivalent if the term considered is either “"i or ™« implies that C must be symmetric
(with 45 different components). Furthermore, as © and i are symmetric, we have:

0,=0;= Ci‘j.fk = Cjiﬂc

and

Uy =Uy = C{jﬂ = Cj:'fk

So, finally, there are only 21 independent components in the general case. The tensor C can thus be
reduced to a 6x6 representation in which it is usual to use the notations:

111,22 52,335 3,2354,3155,1256

However, to give a direct physical meaning to the constants C*l", the standard convention adopts
Uy =2uy, s =2Us,, Uy = 2Up from which derives the representation that is called the Voigt notation:

0-1 Cl 1 C12 Cl 3 C14 Cl 5 C16 I"!1
GZ C21 CZZ CZS C24 CZS C26 U,
0-3 _ C31 C32 C33 C34 CSS C36 Uy
0-4 - C41 C42 C43 Cd-d- C45 C46 u,
GS CSI CSZ CSS C54 CSS C56 uS

i 0-6 i i C61 CGZ CSS C64 C65 C66 1L Ug i

Finally, as the elastic constants result from the solid's atomic nature, the symmetry of this structure
also reduces the number of components.
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The thermal expansion coefficient (see (3.73)) also becomes a tensor of order 2. From symmetry
considerations, the number of independent constants is relatively limited (table 111-1).

Application to cubic crystals
a) elastic constants tensor

Consider crystals with cubic structure and take the axis parallel to the cubic cell: the elastic constants
must be invariant in every symmetry operation of the cube. We can thus show (see, for example,
Hirth & Lothe p. 35):

Cy=Cp»C

and fori #j i =C,,C,;:=0

iij

C

i = Cii ijij
For the complete characterization of a cubic crystal, it is sufficient to have three elastic constants
corresponding to the only three possible independent modes of deformation (dilatation, pure shear,

and simple shear). Therefore, the elastic constants tensor can be represented by:

c, C, C, 0 0 0
c, C, C, 0 0 0
c, C, C, 0 0 0

““="o 0 0 c, 0 o
o 0 0 0 C, O
0o 0 0 0 0 C,

From which we can write these relations between @ and # -

0y, =Cuy, +Cphuy, +C g,
Oy = Cpuy, +C iy + C s,
033 = Cputy, +Cyy, +C sy,

O3 =2C Uy,
05 =2C  u;
0y, =2Cuy,
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Table 111-1: Minimal number of independent components of the elasticity modules tensor ¥

. . ..
and of thermal expansion coefficients tensor ¥

Crystal system C; o
triclinic 18 3
monoclinic 12 3
orthorhombic 9 3
tetragonal 6 2
rhombohedral 6 2
hexagonal 5 2
cubic 3 1

b) Anisotropy coefficient

o
E/ )2 _ :
) %/ N AL We have seen that in the pure shear case, we had in the

coordinate system O%%2 (Figure 3-3):

0 o, O
6= 6, 0 0
0 0 0

That implies the deformations:

0 wu, O
u=| u, 0 0
0O 0 O

Figure 3-3:Shear

Similarly to what we did for stresses, we can show that (in the isotropic case) the strain tensor can be

diagonalized and that it has as its principal axis the coordinate system Ox,"X,'X5" jn which it is written
in the form:

u, 0 0
= 0 wu, O
0 0 0

- ! e ! - - - - - -
with %11 = U U ="Un which is very similar to the expression for stresses:
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o, 0 0
6'=| 0 o0, 0
0 0 0

with Cu ‘=0, 0y =—0,

From Hooke's law for a cubic crystal:

O, =2C,uy,
0y, '=Chuy,'=Cpuy, '=(C, —Cpp)uy,

We also have O12 =0’ , and in this case, the two elastic constants remain independent since:
2C,,=C,, -C, (3.83)

and (see eq. 3.61) Cus =H
We define then the "Anisotropy factor™ A so that:

2C
A — 44
c.—c. (3.84)

for A=1, the crystal is elastically isotropic. As shown in the table below, most crystals - even cubic
ones - are relatively anisotropic.

Table I11-2: Anisotropy factors for different materials

Na K Fe W Al Cu Pb Cdiam | NaCl | KCl

A 7.5 5.7 24 1 1.2 3.2 4 1.6 0.7 0.36

We also note that the so-called compliance tensor s relates strain and stress by:
;= S0 (3.85)

L

With the reduced index notation introduced before:

Sita = S i mn=123

S:'jk! = Smn .
2 Vifm#n=4,5,6
1

S:'jk! = _Smn
4 "ifm=n=4,56

We can then use classic matrixes to change the basis for the matrix Sy . Equation (3.85) becomes,
for example, with reduced indexes:

1
ul = Sllcl + SIZGZ + S13GS + E(SMG‘# + SISGS + SIGGS) (386)
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