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CHAPTER III  THEORY OF ELASTICITY 
 
 
 

 
 

3.1 Simple laws and linear elasticity 
 

Consider a rectangular bar comprising a homogeneous and isotropic material of initial length l in the 

direction of x and dimensions h and w in y and z cartesian coordinates, respectively. The bar is fixed 

at the top end, and the force F at the free bottom end pulls on it in the x-direction (Figure 3-1). 

Figure 1-3: Deformation of a bar 

 

The application of the force F moves point M1, initially at coordinate x,  to M'1 at x+u. The point M2, 

close to M1 at x+dx, moves to M'2 at x+dx+u+du. The strain of the segment M1-M2 is defined as the 

ratio: 

 

 

 

When the strain occurs within the elastic domain, it follows Hooke's law (1678), which describes a 

proportional relation between stress (σ) and strain (ε), 

 

 

 

where σ=F/S, S is the cross-sectional area of the bar, and E is the proportionality constant, called 

"Young modulus" (1807) or elastic modulus. 

(3.1) 

(3.2) 
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In this particular configuration, the section of the bar is constant in x, and thus the stress σ is also 

constant. If the total deformation of the bar is Δl, we have: 

The deformation, Δl in the x-direction, causes contraction of the bar's other sides, Δh and Δw. If the 

solid is isotropic, these changes in the lateral dimensions are also proportional to the stress (σ), 

 

  
 

where ν is a proportionality constant called the "Poisson ratio" (first described in 1814), this constant 

expresses the fact that atoms tend to keep a relative distance that varies only slightly during the 

deformation in the elastic domain, so the volumetric changes are small. 

 

As the previous two expressions are linear for forces and displacements, the superposition principle 

is applicable, and the elastic strain caused by two forces, F1 and F2, is the sum of the strains that would 

be obtained if only one of the forces acted at a time. The whole linear elasticity originates from these 

expressions; no other necessary principles exist. If the material is homogeneous and isotropic, the 

two constants E and ν are sufficient to characterize its deformation behavior in the elastic domain. 

 

Applications: 

 

a) hydrostatic pressure 

 

In this case, the pressure (p) is the same on every 

external surface as if the bar is immersed in a liquid. 

The variations, Δl, Δh, and Δw, are obtained by 

considering the stresses separately in the x, y, and z 

directions and then adding the effects together, that 

is: 
 

 

 
 

 

Figure 3-2: Hydrostatic pressure 

 

  
 

  
 

 

The bulk modulus K is defined by:   

 

 

 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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With this relation, it is clear that for ν < 0.5, K > 0. In fact, K < 0 would correspond to an expansion 

of the solid (ΔV > 0) under the action of pressure, which would mean that the solid can provide energy 

to its surroundings in terms of thermodynamics. For many metals, ν ≈ 0.33 (relatively incompressible) 

and K ≈ E. Natural rubber is close to ν = 0.5, as well as liquids. We discuss this further in section 

3.6.1, that the Poissons constant can range between -1 < ν < 0.5. 

 

b) pure shear 

 

The case of pure shear can be obtained, for example, from the system of forces F applied to a cube 

of side length L, as in the Figure below: 

 
Figure 3-3: Pure shear plane state 

 

In this case, we have : 

 

  
This system of forces produces shear stress of σ=F/S on the planes of the inscribed cube at 45°. The 

faces of the cube have turned by an angle of θ/2 so that: 

 

  
  

  
We characterize this by a shear modulus σ=μθ, so that: 

 

(3.8) 

(3.9) 

(3.10) 
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and 𝝁 = 𝟑/𝟖𝑬 for 𝝂 = 𝟏/𝟑. 

 

 

3.2  Strain tensor 
 

In most cases, deformation is, at the same time, plastic and elastic. Therefore, it would be appropriate 

first to give a very general definition of strain tensor that could be applied for both plastic and elastic 

deformations and then to detail the particularities of both cases. This strain tensor approach is 

discussed in detail in the following. m 

 

a) Strain tensor definition 

 

Deformation is the response of a material to stress loads. 

We consider two neighboring points, M1 and M2, in a 

generic solid (Figure 3-4) so that                     . A system 

of external forces is applied to this solid so that M1 moves 

to M'1 and M2 moves to M'2.  

 

                          represents the displacement of point M1 

and, in the same way                      represents the 

displacement of point M2. 

 

 

 

 

Figure 3-4: Local deformation of a vector in a solid 
 

 

If dxi 
1
 represents the vector               , after deformation, it becomes: 

 

  
 

The distance between two points before deformation is: 

 

  
 

and after deformation, it is: 

 

 
1 We can use Einstein notation where the components of vectors are given by indexes and where the sum is represented 

by a repetition of a same index. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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The first-order approximation is: 

 

  

is called the displacement gradient tensor. 

 

We can also write the second-order approximation:  

 

  
As this expression contains the sum of the indexes i,k, and l, it can be simplified as follows: 

 

  
or 

  
 

For small deformations, the term               can be generally neglected, and thus: 

 

  
 

where is called strain tensor. By its symmetry, it can be diagonalized, and thus, its components 

along the principal axis ( coordinates) can be found: 

 

  
 

The comparison between (3.20) and (3.14) gives insight into the physical meaning of this expression. 

As a matter of fact, by identification of terms: 

 

  
 

The change in volume of an element                            is then: 

 

 

  
 

The trace of the strain tensor (invariant) represents the variation in the volume of a deformed element. 

The symmetrization of the strain tensor consists of a change of basis. To make it simple, consider the 

elastic deformations in a two-dimensional space.

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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Figure 3-5: Decomposition of pure shear with a symmetric deformation and a rotation 

 

We note that the displacement gradient tensor      is not necessarily symmetric as in the case of pure 

shear (Figure 3-5a), and we see that the distortions can be thought of as the sum of deformations 

(Figure 3-5b) and rotations (Figure 3-5c). It also appears that rotations, which do not contribute to 

the elastic deformations of the solid, correspond to the antisymmetric2 part of the tensor   , while 

deformations correspond to the symmetric part of      -in reality, this is true only when the deformations 

are small. 

 

For small deformations, we define the following: 

 

  
and    

 

where are the components of the tensor , which represents the rotation of the solid as a 

rigid body, and the are the components of the strain tensor. 

 

 

3.3   Stress tensor 
 

The resultant of the forces acting on a specific volume of a deformed body is given by: 

 

  
 

The forces are internal forces in the neighboring region next to the volume being considered. We 

assume that the force can be transmitted only on the surface of this volume. Thus, the divergence 

theorem must be applicable: 

 

 

 
2 A tensor is called antisymmetric if it alternates sign (+/−) when any two indices of the subset are 
interchanged.  

(3.23) 

(3.24) 

(3.25) 
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We call stress tensor. It can be shown that this tensor is symmetric to the strain tensor by 

calculating the moment of the forces acting on the volume dV. The equilibrium of the solid becomes 

simply  and: 

  
 

3.4  Thermodynamics review 
 

The variation of internal energy of a thermodynamic system is given by: 

 

  

 

where δQ is the heat given to the system, and δW is the work done on the system. These two quantities 

are not exact total differentials. In particular:                   and the equal sign holds only in a reversible 

process.  

 

The following considers first those processes and takes into account the classic thermodynamic 

variables P, V, S, and T, the internal energy is defined as: 

 

 

If the volume is constant, then dE = dQ. The internal energy E is the most appropriate form of 

expression for the energy of an adiabatic system with constant volume. 

 

If the pressure is constant, the heat exchanged with the system is given by: 

 

 

 

 

 

This expression is an exact differential. In an adiabatic process, dH=0. H is called enthalpy and 

represents the most appropriate form of energy for a constant pressure process. The work done while 

keeping a constant temperature in a reversible process is given by: 

 

 

F=E-TS is the thermodynamic free energy (Helmholtz free energy) and represents the most 

appropriate form of energy for an isothermal system at constant volume if the process is 

nonreversible,                  and thus              . 

 

Finally, if the pressure and temperature are constant (common conditions for a laboratory), we 

use the Gibbs free energy: 

 

The physical meaning of G can be grasped considering systems of N variable particles. We then 

introduce the chemical potential μ of a particle, and the internal energy variation becomes: 

(3.26) 

(3.27) 

(3.28) 

(3.31) 

(3.30) 

(3.29) 

(3.32) 

(3.33) 

(3.34) 
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As T, P, and N are independent, it can be rewritten as: 

G is the chemical potential of the system. 

 

How are thermodynamic functions used? 

 

In a nonreversible process                         , entropy increases without adding heat. 

 

 

 

If T and V are constants, then  

 

 

The system tends to a minimum of free energy, F. 

 

If P and T are constants 

 

The system tends to a minimum of G. 

 

If V and S are constants: 

 

The internal energy E is minimal, and the process is reversible. Therefore, F and G's utility is found 

in the irreversible processes. 

 

 

3.5   Thermodynamics and Deformation 

3.5.1  Work 

 

Consider a deformed body that is left without external stress applied. The deformation ui varies of 

 a quantity δui.  

 

The work δW done by the internal forces                  is given by: 

 

 

 

 

(3.35) 

(3.38) 

(3.39) 

(3.40) 

(3.36) 

(3.37) 

(3.41) 
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The integration by parts yields: 

 

The surface integral represents the surface tension of the body, which is negligible in the elasticity of 

metals. In our case, the forces applied externally to the deformed body are zero and do not contribute 

to this term. Using the symmetrization of the strain tensor (3.19): 

and consequently  

 

This expression defines the work per unit volume done by the deformation of the solid. We note that 

δW is the matrix product /and /trace. 

 

 

3.5.2   Energy 

 

The variation of the system's internal energy per unit volume dEv  is given by: 

 

The minus sign (-) before the work term is also in (3.44), in which the body does work on the 

surroundings. 

 

Example: uniform compression 

 

In uniform compression, . 

Using equation (3.45) per unit volume, we get: 

 

                                and thus 

 

 
We find the classic form of internal energy (3.28) again. Thus, the equation in (3.45) generalizes the 

expression for the internal energy. In what follows, we do not mention if the energy is per unit volume, 

but the context suffices for clarifying. The other forms of energy result from the following and the 

same procedure. 

 

 

 

 

 

 

 

 

 

 

 

(3.43) 

(3.45) 

(3.44) 

(3.46) 

(3.47) 
 

(3.48) 

(3.49) 

(3.42) 
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3.5.3  Physical origin of elasticity 

 

Consider a longitudinal elastic bar kept in strain by a force f. A retraction force balances this force fr 

that opposes f. If we consider a small deformation dl, the variation in free energy F=E-TS is given by 

(3.46), 

where is the absolute value of the retraction force. 

 

From this expression, we deduce that the elastic retraction force corresponds to the increase in free 

energy of the system per unit length of elongation. It can be divided into two terms: one contribution 

coming from the opposition of the sample to the increase in internal energy and another from the 

entropy relative to heat dissipation. In other words, the deformation modifies the distances between 

atoms with increased internal energy (the position is not a minimum in the bond potential energy 

anymore) and dissipates heat. We can separate these two effects by studying the variation of the 

retraction force (elastic modulus) as a function of the temperature. As the free energy F is an exact 

total differential of T and l: 

 

which becomes considering (3.50) and (3.51): 

 

 

 

 

By combining (3.53) and (3.51) 

 

 

 

 

The expression in (3.54) of the retraction force enables us to distinguish two physical cases: the ideal 

crystal and the ideal elastomer (natural rubber). In the first case, the retraction force corresponds only 

to an internal energy variation and does not vary as a function of the temperature. In the second case, 

the retraction force increases proportionally to the increase in temperature. As a matter of fact, T>0 

 and fr > 0 and thus              also. 

An ideal elastomer heats up when stretched and cools down when released. The physical origin of 

this behavior comes from the molecular structure of elastomers. These materials are formed from 

long polymer chains linked with weakly interacting Van der Waals forces in the order of one 

interaction for every 100 monomers (see Chapter I). The internal energy of an elastomer is only 

affected slightly by elongation. Consequently, elongation leads to increased monomer chain 

alignment of the chains and, thus, a decrease in entropy.  

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 
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, T increases with the retractiforce (3.54). The retraction force is due to the Since 

Brownian motion of the monomers, which increases with temperature. We must note the analogy 

with gases, which warm up when adiabatically compressed. In analogy to (3.51), we have:  

 

 

 

Most crystal materials show an elastic behavior of enthalpic type, whereas amorphous polymers 

behave similarly to rubber. In the order of 100 GPa, the elastic modulus of crystal materials is 100 

times larger than those of elastomers. 

 

 

3.6  Hooke's law 
 

3.6.1  Deformation of isotropic solids 

 

To apply general thermodynamic relations found in § 3.5, we must express the energy as a function 

of the strain tensor. We can find this expression by developing the energy in the power series of . 

Consider a solid body that has been deformed at a constant temperature. The thermodynamic potential 

to take into account is the free energy F. We suppose that for there are no stresses, so that 

. As in equation (3.48): 

 

 

 

Thus, the development of F does not include linear terms in . In an isotropic solid, the deformation 

energy has to be independent of the direction of deformation to the coordinate system of the solid. In 

other words, the energy must be invariant to a coordinate transformation. 

 

Invariants 

We noted that is a symmetric matrix, and thus, it can be diagonalized. To find the eigenvalues, the 

characteristic equation to solve is written as: 

 

 

 

 

 

This equation does not depend on the coordinate system chosen, and thus: 

, and are invariants. 

There are two independent invariants of the second order: 

Any linear combination of these invariants is also invariant, for example: 

 
 

The second-order expansion of F, which is a scalar, must be expressed as a function of the two 

quadratic independent invariants: 

(3.55) 

(3.56) 

(3.57) 
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where λ and μ are called Lamé parameters. Expressing the tensor as the sum of a diagonal matrix 

(uniform compression or expansion) and a matrix with a trace equal to zero (pure shear) is helpful. 

 

As               and               are also invariants, it is easy to demonstrate (optional exercise) that: 

 

              is also invariant. Using the fundamental relation (3.48), F can thus be written: 

 

 

 

With we can directly find the relation between the stress and the strain tensors. It is 

Hooke's law again, already expressed in simple form in (3.2): 

 
 

It is simple to calculate the trace of : 

 
 

Substituting this expression into (3.61), we obtain the inverse relation: 

For a body in uniform compression: 

 
 

Considering (3.63) and (3.22), we come to: 

For small pressure and volume changes, this can be written: 

 

 

 

1/K represents the coefficient of uniform compression. In the same way, considering a pure shear, we 

can give a physical meaning to μ. As a matter of fact, if as in Figure 3-5, the expression 

(3.61) yields: 

 

 

 

                 or                where μ is the shear modulus. 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 
 

(3.57) 

(3.58) 

(3.64) 

(3.65) 
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Finally, considering a homogeneous tensile stress , it is readily shown that the expression 

(3.2) can be obtained (optional exercise): 

 

where E is the Young modulus of elasticity. We equally obtain the transverse components of the 

deformation (3.3): 

 

 

 

 

where ν is the Poisson ratio, we can introduce the following analysis. Since K and µ are always 

positive, ν can only vary between -1 (K=0 by (3.67)) and 1/2. From (3.66) and (3.67), we can derive 

equation (3.7) discussed in section 3.1: 

The formulas (3.58) and (3.61) are usually written with the classic parameters E and ν: 

 

Relations between elastic parameters in isotropic bodies  

 

     and   

lead to: 

 

                                                                                  and    

 

 

and inversely, we obtain equation (3.11) discussed in section 3.1.  

 
 

This gives also: 

 

 

and: 

 

(3.66) with 

Then, considering that: 
(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
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3.6.2   Temperature effects 

 

The preceding expressions have been introduced without considering thermal dilatation. However, if 

the temperature varies, there is a deformation without external stresses. Therefore, a term of the first 

order in  has to be added to the expression (3.59) for the free energy F. Moreover, we consider 

that the temperature variations are small, so the variation of F as a function of temperature is also of 

the first order. Therefore, the only first-order invariant being           , F must be in the form: 

 

 

 

 

We obtain the expression of the stress tensor using (3.48) as before: 

 

 

 

If is zero, considering the trace of the right-hand side of (3.74), we come to: 

 

where α is then the coefficient of thermal expansion. The linearity of equation (3.74) is generally 

valid for a range of temperatures of some tens of degrees. The expression is valid for more significant 

variations, but we consider that α=α(Τ). 

 

 

3.6.3  Equilibrium equation of isotropic bodies 

 

We can apply the equilibrium equation (3.26) to the expression for the stress tensor given by Hooke's 

law in (3.68): 

 

 
 

 

This equation can be written in the vectorial form: 

 

 
 

This expression can be found in the literature in different forms according to which vector calculus 

formulas have been used. For example, applying the relation , 

equation (3.77) becomes: 

 

 

 

Applying divergence to equation (3.78), we obtain: 

 

 
(3.79) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 
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Applying the laplacian to equation (3.77) and taking into account (3.79): 

 

 

These expressions enable us to solve equilibrium problems for elastic bodies. 

 

 

3.6.4   Generalized Hooke's Law 

 

As both  and  are tensors of order 2, Hooke's law is expressed for the general case by the linear 

relation: 

The tensor for the elastic constants is of order 4, i.e., it has components. However, 

considering that the contribution to elastic energy:  

 

It must be equivalent if the term considered is either or implies that  must be symmetric 

(with 45 different components). Furthermore, as and are symmetric, we have: 

 

and 

 

 

So, finally, there are only 21 independent components in the general case. The tensor can thus be 

reduced to a 6x6 representation in which it is usual to use the notations: 

 

 
 

However, to give a direct physical meaning to the constants , the standard convention adopts 

from which derives the representation that is called the Voigt notation: 

 

 
 

 

Finally, as the elastic constants result from the solid's atomic nature, the symmetry of this structure 

also reduces the number of components. 

(3.80) 

(3.81) 

(3.82) 
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The thermal expansion coefficient (see (3.73)) also becomes a tensor of order 2. From symmetry 

considerations, the number of independent constants is relatively limited (table III-1). 

 

 

Application to cubic crystals 

 

a) elastic constants tensor 

 

Consider crystals with cubic structure and take the axis parallel to the cubic cell: the elastic constants 

must be invariant in every symmetry operation of the cube. We can thus show (see, for example, 

Hirth & Lothe p. 35): 

 

 and for i ≠ j   

 

For the complete characterization of a cubic crystal, it is sufficient to have three elastic constants 

corresponding to the only three possible independent modes of deformation (dilatation, pure shear, 

and simple shear). Therefore, the elastic constants tensor can be represented by: 

 

From which we can write these relations between and : 
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Table III-1:  Minimal number of independent components of the elasticity modules tensor  

and of thermal expansion coefficients tensor  

 

Crystal system 
  

triclinic 18 3 

monoclinic 12 3 

orthorhombic 9 3 

tetragonal 6 2 

rhombohedral 6 2 

hexagonal 5 2 

cubic 3 1 

 

b) Anisotropy coefficient 

 

We have seen that in the pure shear case, we had in the 

coordinate system  (Figure 3-3): 

 

 

 

 

 

 

That implies the deformations: 

 

 

 

 

 

 
 

Figure 3-3:Shear 

 

Similarly to what we did for stresses, we can show that (in the isotropic case) the strain tensor can be 

diagonalized and that it has as its principal axis the coordinate system in which it is written 

in the form: 

with , which is very similar to the expression for stresses: 
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     with  

 

From Hooke's law for a cubic crystal: 

We also have , and in this case, the two elastic constants remain independent since: 

and (see eq. 3.61) . 

 

We define then the "Anisotropy factor" A so that: 

for A=1, the crystal is elastically isotropic. As shown in the table below, most crystals - even cubic 

ones - are relatively anisotropic. 

 
Table III-2: Anisotropy factors for different materials 

 

 Na K Fe W Al Cu Pb Cdiam NaCl KCl 

A 7.5 5.7 2.4 1 1.2 3.2 4 1.6 0.7 0.36 

 

 

We also note that the so-called compliance tensor s relates strain and stress by: 

 

With the reduced index notation introduced before: 

if m, n = 1, 2, 3 

if m ≠ n = 4, 5, 6 

if m = n = 4, 5, 6 

We can then use classic matrixes to change the basis for the matrix . Equation (3.85) becomes, 

for example, with reduced indexes: 

(3.84) 

(3.85) 

(3.86) 

(3.83) 


